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Abstract: In view of global warming, caused by the increase in the concentration of greenhouse
gases, China has proposed a series of carbon emission reduction policies. It is necessary to obtain the
spatiotemporal distribution of carbon emissions accurately. Nighttime light data is recognized as an
important basis for carbon emission estimation. A large number of research results show that there is
a positive correlation between nighttime light intensity and carbon emission. However, in the current
context of China’s industrial reforms, this positive relationship may not be entirely correct. First,
we correct the nighttime light data from different satellites and established a long-term series data
set. Then, we verify the positive correlation between nighttime light and carbon emission. However,
the time scale of emission data often lags, and the carbon concentration data are released earlier
and are more accurate than emission data. Therefore, we propose to investigate the relationship
between nighttime light and carbon concentration. It is found that there may be different correlations
between nighttime light and the carbon concentration, due to different urban industrial structure
and development planning. Therefore, by exploring the relationship between nighttime light and the
carbon concentration, the existing carbon emission estimation model can be modified to improve the
accuracy of the emission model.

Keywords: DMSP-OLS; NPP-VIIRS; CO2 emissions; CO2 concentration

1. Introduction

Energy is an important material basis for human existence and production. With
the continuous progress of human society, people’s demand for energy is increasing day
by day. China’s current energy structure is still largely dependent on fossil fuels, such
as oil, coal, and natural gas [1]. The burning of fossil fuels has led to a gradual increase
in greenhouse gas emissions. According to the World Bank, China’s CO2 emissions in
1990 were only 2.46 billion tons, which accounts for 11% of the global total, and are far
lower than the United States’ 4.879 billion tons. Since 2005, China’s total CO2 emission
(including LUCF) has ranked first in the world. Additionally, China’s total CO2 emissions
were about 10 billion tons in 2018, accounting for about 28% of the global total, which is
about twice that of the United States and 9.2 times that of Russia. The massive emission
of CO2 not only affects the sustainable development strategy but also causes great harm
to the environment, the most obvious feature of which is global warming [2]. Therefore,
energy saving and emission reduction to reduce CO2 emissions are some of the important
tasks at present. In response to the call for a low-carbon economy and green development,
China announced during the APEC meeting at the end of 2014 that it planned to peak CO2
emissions around 2030 and strove to do so as early as possible. In addition, China planned
to increase the share of non-fossil energy in primary energy consumption to about 20%
by 2030. China reaffirmed its goal of “Emission Peak” by 2030 and “Carbon Neutrality”
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by 2060 in September 2020. In order to effectively implement the dual carbon target, the
task of carbon emission reduction needs to be carefully assigned to local administrative
units. Thus, we need to be able to accurately analyze the spatiotemporal changes of carbon
emissions [3].

There are two main methods of estimating carbon emissions. One approach is the
statistics-based IPCC carbon accounting method, which is a common way of estimating
carbon emissions. Schipper et al. [4] used the IPCC inventory method to analyze the evolu-
tion of carbon emissions from the manufacturing sector in 13 IEA countries. Nejat et al. [5]
estimated the carbon emissions of ten countries, including China, the United States, and
India, based on energy consumption, and they proved that the residential sector is the
third largest energy consumer in the world. However, most of these carbon emissions
estimates are based on national, regional, and provincial scales. Due to incomplete data, it
is difficult to estimate carbon emissions on the county or even grid scale. The other is an
observation-based approach (top-down estimate of carbon emissions) to estimating carbon
emissions, one of which is to estimate carbon emissions from nighttime light data. The
Satellite Nighttime Light (NL) sensors are capable of recording visible light, which can
reflect the dynamics of human activities to some extent [6]. Carbon emissions (Carbon,
in this paper, mainly comes from CO2.) are also deeply affected by human activities, so
many scholars use NL data to estimate carbon emissions. Ma et al. [7] used the corrected
DMSP-OLS data to construct a spatiotemporal geographically weighted regression model
between NL data and carbon emissions per capita, as well as carbon emissions per unit
area in China. The evaluation results showed that there was a good correlation between NL
data and carbon emission data, which could better simulate the spatiotemporal dynamics
of carbon emissions. Wang et al. [8] analyzed the carbon emission estimation model of
Guangdong Province, based on NTL, and revealed the scale effect law of different spatial
resolutions. Moreover, in order to synthesize the advantages of both kinds of NL data
and study the relationship between long-term NL data and carbon emission data, many
scholars have integrated these data. Li et al. mainly integrated nighttime light data by syn-
thesizing monthly NPP-VIIRS data, from 2012 to 2018, into annual data [9]. Qian et al. [10]
constructed a NL data set and used it to establish an estimation model for CO2 emissions.
On this basis, they analyzed the spatiotemporal dynamics of CO2 emissions at four scales:
pixel, county, prefecture, and province.

Numerous studies have shown that there is a positive correlation between NL data and
carbon emission data, and NL data are used to estimate CO2 emissions in the establishment
of a carbon emission estimation model. However, considering that China is currently
implementing carbon emission reduction policies to control regional carbon emissions,
especially in some developed cities such as Beijing and Shanghai, the marginalization
of heavy industry appears. In developed cities with high NL intensity, CO2 emissions
can be low. Therefore, the positive correlation between NL data and carbon emission
data, in the carbon emission estimation model, may not be completely correct, so this
paper studies whether there is a negative correlation. Since the time scale of emission data
often lags, carbon concentration data are released relatively earlier, and the data accuracy
is higher. Therefore, we choose to study the relationship between NL data and carbon
concentration data.

In this study, we firstly process DMSP-OLS and NPP-VIIRS data to obtain long-term
NL data, and then, we use the integrated NL data to verify the positive correlation between
NL data and carbon emission data in China. At the same time, previous studies show
that carbon emissions, caused by industrial emissions and human activities, will affect
atmospheric CO2 concentration, and the carbon concentration should also be high in
areas with high carbon emissions [11,12]. Therefore, it can be theoretically inferred that
there should also be a positive correlation between NL data and CO2 concentration. This
view can be verified by comparing the night-light remote sensing images and the spatial
distribution maps of CO2 concentration in Hubei Province. However, when studying
the relationship between NL data and CO2 concentration in prefecture-level cities in the
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Beijing–Tianjin–Hebei region, it is found that there is a negative correlation. Therefore,
this paper aims at the reason why there is a negative correlation between NL data and
CO2 concentration in the Beijing–Tianjin–Hebei region, and it provides a new idea for the
further improvement of the model of estimating carbon emissions based on NL data.

2. Data Sources

Multiple data sets are used in this study, including DMSP-OLS NL images [13], NPP-
VIIRS NL images [14], MODIS EVI product [15], CO2 emission data [16], and CO2 concen-
tration data [17] in China.

DMSP is the Defense Weather Satellite Program of the United States. The program
detects low-intensity lights at night through sensors carried by weather satellites. The
National Oceanic and Atmospheric Administration (NOAA) collects statistics and, then,
publishes annual data of global stable nighttime lights. From 1992 to 2013, there were
34 periods of stable NL data from DMSP-OLS, which were obtained from six satellites (F10,
F12, F14, F15, F16, and F18). Each period of data has three types: stable NL data, cloud-free
coverage, and average visible image. These three types of data are available as GeoTIFFs
for download from the version 4 composites in NOAA/NGDC. The nighttime light data
values are saturated, ranging from 1 to 63, and the background noise is identified and
replaced with zero values.

NPP-VIIRS satellite data also come from the National Geophysical Center of the
U.S. National Oceanic and Atmospheric Administration. The first Suomi National Polar
Cooperation satellite was launched in the United States in October 2011. At present, the
Suomi-NPP satellite only provides daily data, monthly synthetic data, and some annual
synthetic data from 2012 to the present. The NPP-VIIRS nighttime light data are not
oversaturated and have a resolution of 15 arc seconds (about 500 m at the equator).

The MODIS EVI product is a 16-day composite image data available from Google
Earth Engine. The MOD13A2 product used in this study provides two vegetation indices
(VI): normalized differential vegetation index (NDVI) and enhanced vegetation index (EVI).
EVI data can be used to desaturate DMSP data. The algorithm of the product is to select
the best available pixel value from the images collected within 16 days, with a resolution of
1 km.

CO2 emission data are obtained from the Multi-resolution Emission Inventory for
China (MEIC). Since 2010, MEIC has been developed and maintained by Tsinghua Univer-
sity to build a high-resolution inventory of anthropogenic air pollutants and CO2 emissions
in China. It covers more than 700 anthropogenic emission sources in mainland China,
including 10 major air pollutants and carbon dioxide (SO2, NOX, CO, NMVOC, NH3,
PM2.5, PM10, BC, OC, and CO2) emissions.

The CO2 concentration data are obtained from the Monthly Global Map of the CO2
column-averaged volume mixing ratios provided by GOSAT, which are processed to obtain
CO2 concentration data with high spatiotemporal resolution [18].

Based on the data sets described above and other data sets used in this paper but not
introduced in detail, the information sources of all data sets used in this paper are shown
in Table 1.
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Table 1. Description of the data used in the study.

Data Set Description Time Quantum Source

DMSP-OLS 1000 m stable NL data 1992–2013

NOAA/NGDC
(https://www.ngdc.noaa.gov/eog/
dmsp/downloadV4composites.html

(accessed on 25 April 2022))

NPP-VIIRS 500 m NL data 2013–2021
NOAA/NGDC (https://www.ngdc.noaa.
gov/eog/viirs/download_ut_mos.html

(accessed on 25 April 2022))

EVI Vegetation Index 2008–2013
Google Earth Engine (https://lpdaac.usgs.
gov/products/mod13a2v061 (accessed on

12 June 2022))

CO2 Emission 25 km CO2 emission data 2008–2017
Multi-resolution Emission Inventory for

China (http://meicmodel.org (accessed on
5 May 2022))

CO2 Concentration 25 km CO2 concentration 2013–2017

Gosat Project
(https://data2.gosat.nies.go.jp/gallery/

fts_l2_swir_co2_gallery_en.html (accessed
on 5 May 2022))

Administrative
boundaries of China [19]

Vector files of Chinese
provinces and cities

National Geographic Center of China
(http://www.ngcc.cn/ngcc (accessed on

24 April 2022))

3. NL Data Preprocessing

Due to the limitations of OLS sensor design, there are problems such as discontinuities
between DMSP-OLS night-light remote sensing images and oversaturation of pixel DN
value. Additionally, DMSP data are provided until 2013 and, then, replaced by NPP-VIIRS
NL data. NPP-VIIRS data have been available since April 2012, but NL images have
problems with background noise and outliers. Therefore, in order to obtain long-term
stable NL data values, two types of data need to be corrected and carried on data fitting.
The process of data fitting is shown in Figure 1.
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Firstly, two types of NL data are processed, respectively. Due to its different char-
acteristics, DMSP-OLS data require inter-sensor correction, continuity correction, and
desaturation. NPP-VIIRS data require annual data synthesis and noise reduction. Then, the
linear model is used to regress the two kinds of data after processing, and the relationship
between them is obtained. The DMSP-OLS data are integrated into NPP-VIIRS data to
obtain the NL data of long-term series.

3.1. Correcting DMSP-OLS Data

DMSP-OLS stabilized nighttime light radiation data are obtained from different sen-
sors. After removing the unstable light sources, such as auroras and wildfires, as well as
the interference of moonlight and clouds, the final data are the stable average annual value
of the cloudless images [20]. The 34 periods of NL data, from 1992 to 2013, are obtained
by six satellites respectively. Due to the decline of satellites and the different performance
of different sensors in detection, the image data of different sensors are discontinuous in
different years. For example, compared with other sensors, F18 has a mutation. There is
a big leap between the data obtained in 2009 by F16 and that obtained in 2010 by F18. In
addition, the data obtained by different sensors in the same year also differ. For instance,
the total DN value obtained by F15 and F16 in 2004 differ by 28.4%. Therefore, inter-sensor
calibration of DMSP-OLS data is required. The calibration process is as follows.

Firstly, Jixi City of Heilongjiang Province, with stable urban development and a wide
range of regional night light DN value, is selected as a pseudo invariant region. F16 is
selected as the standard sensor, and the stable NL data obtained by F16 from 2004 to 2009
are used as the reference data set. Then, the F15 data are corrected with the F16 NL data.
The F16 and F15 data overlap from 2004 to 2007, so the image metadata of Jixi from F162004
to F162007 are used as reference. The least square method is used to fit the data from
F152004 to F152007 with a quadratic regression model. The F15 sensor data are corrected
with the obtained parameters, and then, the F14 sensor data are corrected with the corrected
F15 sensor data. In this way, the corrected F14, F12, and F10 can be obtained. Since there is
no data of coincident year between the F16 sensor and F18 sensor, the data of F162009 are
used to perform quadratic regression on the data of F182010, and the corrected F18 data are
obtained. The regression equation is shown in Equations (1) and (2).

DNn = a× DN2
n−1 + b× DNn−1 + c (1)

DN′ = a× DN2
0 + b× DN0 + c (2)

In the expression, DNn indicates the DN value of the reference data set. DNn−1
indicates the DN value of the data to be corrected set. DN0 indicates the DN value of
the raw data before correction. DN′ indicates the DN value of the corrected data set. n
indicates the sensor number, and n − 1 indicates the previous sensor number. a, b, and c
indicate parameters determined by fitting progress. Parameters of the sensor calibration
regression model are shown in Table 2.

Table 2. Parameters of sensor calibration regression model.

Sensor Number a b c R2

F16–F18 −0.004556 1.257 1.016 0.9172
F16–F15 0.001658 0.835 −0.178 0.9402
F15–F14 0.00005344 1.042 0.444 0.8766
F14–F12 −0.006385 1.371 −0.699 0.9460
F12–F10 0.002600 0.675 0.946 0.8743

Due to the absence of on-board calibration, there are abnormal fluctuations among
the data obtained by the same sensor in different years. In addition, there are differences
in the data obtained by different sensors. Therefore, DMSP NL data are discontinuous in
long-term series, so continuity correction is needed. Firstly, the differences generated by



Remote Sens. 2022, 14, 4181 6 of 18

different sensors on the data of the same year are processed, according to Equation (3), to
obtain the only stable NL data set for each year from 1992 to 2013.

DNn =
(

DNa
n + DNb

n

)
/2 (3)

In the expression, n indicates the year. DNa
n and DNb

n represent the DN values of two
sensors in n year.

According to the law of urban development in China, the DN value of NL data in the
next year should not be lower than that of the previous year. Therefore, the Equation (4) is
adopted for correction:

DNn−1 =

{
DNn, DNn−1 > DNn
DNn−1, other

(4)

In the expression, DNn and DNn−1 represent the DN values of the sensor in n and
n − 1 year.

Moreover, the DN value, influenced by DMSP night-light remote sensing images, has
a saturation effect, while NPP-VIIRS data have no saturation effect. Therefore, to integrate
DMSP-OLS data into NPP-VIIRS data, Enhanced Vegetation Index (EVI) can be used to
desaturate DMSP data. The MODIS EVI product is 16-day composite image data provided
by NASA LP DAAC at the USGS EROS Center. There are 23 issues of data per year, with
an average of two issues per month. DMSP data are annual average data, so the 23 issues
of EVI data are averaged to obtain the annual average EVI image. Then, they are put into
the model to desaturate the DMSP data. The formula is shown in Equation (5).

EANTL = (
1 + (nNTL− EVI)
1− (nNTL− EVI)

) ∗ NTL (5)

In the expression (5), NTL indicates the DN value of NL data, and nNTL indicates the
normalized NTL value. EANTL indicates the NTL value after desaturation.

3.2. Correcting NPP-VIIRS Data

The original satellite observations at NOAA CLASS are easily affected by clouds,
moonlight, etc., resulting in cloudy pixels. In addition, the view angle and lunar illumi-
nation differences will also affect the data and need radiometric adjustments [21]. The
NPP-VIIRS data used in this study are based on monthly cloud-free composites produced
by the Earth Observation Group (EOG). The monthly average light radiation data product,
synthesized by VIIRS/DNB, has been published monthly since April 2014. The images are
filtered for stray light, lightning, moonlight, and clouds, and they retain auroras, fire, boats,
and other temporary lights. Therefore, abnormal values may occur in the data, which need
the reduction in noise. This experiment refers to Zhong’s [22] method and uses the VIIRS
annual composite night light data of 2015, which has been filtered by American authorities,
as a mask for noise reduction. First, the annual VIIRS data of 2015 are binarized, the value
of the light area is assigned as 1, and the value of the non-light area is assigned as 0. Then,
the image is used as a mask, and raster multiplication is performed with the data of the
image to be processed on the grid’s scale. The result is that the original value of the light
area in 2015 is retained, and the light value of the non-light area is changed to 0.

3.3. Processing Result

We compare the preprocessing data with the post-processing data. Figure 2 shows
DMSP data from 2008 to 2013 and synthetic VIIRS annual data from 2013 to 2017 before
processing. Figure 3 shows the NL data from 2008 to 2017 after processing. From the
figures, it can be found that the NL data have a large span before processing, and there is a
mutation phenomenon. The data, after processing, are more consistent with the actual law.



Remote Sens. 2022, 14, 4181 7 of 18

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 18 
 

 

 
Figure 2. Total DN value of nighttime light in Beijing before processing. 

 
Figure 3. Total DN value of nighttime light in Beijing after processing. 

3.4. Regression Analysis 
Many scholars choose to convert VIIRS data into DMSP data. However, considering 

that CO2 concentration has monthly data, it is more convenient and effective to use VIIRS 
monthly data for discussion. Moreover, the spatial resolution of the original DMSP and 
VIIRS data are 2.7 km and 742 m, respectively, so the VIIRS data can provide more spatial 
detail. Moreover, VIIRS DNB has a wider radiation range and stronger low-light detection 
ability compared to DMSP. Therefore, this paper chooses to convert DMSP data into VIIRS 
data to obtain long-term series NL data. DMSP-OLS provides annual data from 1992–2013, 
and NPP-VIIRS provides monthly data from April 2012 to the present, so NL data from 
overlapping years are used for fitting. DMSP-OLS provides annual data, and NPP-VIIRS 
data from January to March 2012 are missing, so 2013 data are used for fitting. The 
monthly data of VIIRS in 2013 are synthesized into annual data by means of the average 
method, and then, the sum of provincial regional pixels of DMSP-OLS and NPP-VIIRS 
nighttime lights in 2013 are counted, respectively, and fitted by linear regression model. 
The result is shown in Figure 4.  

Figure 2. Total DN value of nighttime light in Beijing before processing.

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 18 
 

 

 
Figure 2. Total DN value of nighttime light in Beijing before processing. 

 
Figure 3. Total DN value of nighttime light in Beijing after processing. 

3.4. Regression Analysis 
Many scholars choose to convert VIIRS data into DMSP data. However, considering 

that CO2 concentration has monthly data, it is more convenient and effective to use VIIRS 
monthly data for discussion. Moreover, the spatial resolution of the original DMSP and 
VIIRS data are 2.7 km and 742 m, respectively, so the VIIRS data can provide more spatial 
detail. Moreover, VIIRS DNB has a wider radiation range and stronger low-light detection 
ability compared to DMSP. Therefore, this paper chooses to convert DMSP data into VIIRS 
data to obtain long-term series NL data. DMSP-OLS provides annual data from 1992–2013, 
and NPP-VIIRS provides monthly data from April 2012 to the present, so NL data from 
overlapping years are used for fitting. DMSP-OLS provides annual data, and NPP-VIIRS 
data from January to March 2012 are missing, so 2013 data are used for fitting. The 
monthly data of VIIRS in 2013 are synthesized into annual data by means of the average 
method, and then, the sum of provincial regional pixels of DMSP-OLS and NPP-VIIRS 
nighttime lights in 2013 are counted, respectively, and fitted by linear regression model. 
The result is shown in Figure 4.  

Figure 3. Total DN value of nighttime light in Beijing after processing.

3.4. Regression Analysis

Many scholars choose to convert VIIRS data into DMSP data. However, considering
that CO2 concentration has monthly data, it is more convenient and effective to use VIIRS
monthly data for discussion. Moreover, the spatial resolution of the original DMSP and
VIIRS data are 2.7 km and 742 m, respectively, so the VIIRS data can provide more spatial
detail. Moreover, VIIRS DNB has a wider radiation range and stronger low-light detection
ability compared to DMSP. Therefore, this paper chooses to convert DMSP data into VIIRS
data to obtain long-term series NL data. DMSP-OLS provides annual data from 1992–2013,
and NPP-VIIRS provides monthly data from April 2012 to the present, so NL data from
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overlapping years are used for fitting. DMSP-OLS provides annual data, and NPP-VIIRS
data from January to March 2012 are missing, so 2013 data are used for fitting. The monthly
data of VIIRS in 2013 are synthesized into annual data by means of the average method,
and then, the sum of provincial regional pixels of DMSP-OLS and NPP-VIIRS nighttime
lights in 2013 are counted, respectively, and fitted by linear regression model. The result is
shown in Figure 4.
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Figure 4. The fitting result of DMSP-OLS and NPP-VIIR.

In Figure 4, the dots represent Chinese provinces. Tibet, Hong Kong, Macao, and
Taiwan were excluded from the study due to the lack of complete information. The abscissa
is DMSP data and the ordinate is VIIRS data. It can be seen from the figure that DMSP, in
2013, has a good linear correlation with VIIRS data, and the fitting degree can reach 0.8733
by using the linear model, indicating that this regression model is highly representative.
Therefore, a regression equation was obtained to integrate DMSP-OLS data with NPP-VIIRS
data. The formula is shown in Equation (6).

y = 0.1727x + 24672 (6)

In the expression, x indicates the total value of provincial area DN of raw DMSP-OLS
NL data, and y indicates the DN value corrected to NPP-VIIRS data. According to the
above formula, the longstanding NL data from 1992 have been obtained.

4. Analysis of Experiment

In recent years, many scholars have studied the correlation between NL data and
carbon emission data, and they have constructed carbon emission estimation models based
on NL data. In order to realize spatial informatization of carbon emissions, Zhao et al. [23]
constructed a simulation model of carbon emissions in the Yangtze River Delta region,
from the pixel scale, by using NL data and energy consumption statistics as data sources.
Xiao et al. [24] used DMSP-OLS and NPP-VIIRS to construct a NL data set with a long-term
series. Combined with energy statistics, they established a relationship model between NL
values and urban energy carbon emissions in Hunan Province, and they further simulated
the urban energy carbon emissions in its time series. It can be found that there is a positive
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correlation between NL data and carbon emission data. To further verify it, this paper
studies the relationship between NL data and carbon emission data on a provincial scale.

Since China’s existing statistical data cannot directly provide the carbon emission
data of regions or industries, the carbon emission data can only be obtained, indirectly,
through statistical data. At present, there are many carbon emission products, such as
ODIAC [25–28]. Considering that the experiment is conducted in China and has the same
spatial resolution as the carbon concentration data, this experiment uses the annual, sector-
wide (including power, industry, transport, civil, and agricultural) CO2 emission data from
the MEIC Inventory from 2008 to 2017, with a resolution of 0.25◦. Since the NL data of the
long-term series are obtained by fitting the data of 2013, the NL data of 2013 and carbon
emission data are selected for the study. In order to make the research results more reliable,
the data from 2008 to 2017 are taken to make regression with the carbon emission data. The
fitting result is shown in Figure 5.
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Figure 5. Fitting relationship between NL data and carbon emission data of Chinese provinces.

In Figure 5, the dots represent Chinese provinces. Tibet, Hong Kong, Macao, and
Taiwan were excluded from the study due to the lack of complete information. The abscissa
is NL intensity and the ordinate is carbon emissions. Due to excessive data, only odd-year
data are used in Figure 5. NL data adopt the total intensity of regional light, i.e., the sum
of DN values of all pixels in a province in China. Carbon emission data are also the total
carbon emissions of each province. It can be seen from Figure 5 that there is a positive
correlation between NL data and carbon emission data. Places with large DN values of
NL light have frequent social and economic activities, leading to an increase in carbon
emissions. This is also consistent with the existing carbon emission estimation model,
that is, NL data as the input are considered to have a positive correlation with carbon
emissions [29].

Moreover, Figure 6 is a statistical chart of the total DN value of annual nighttime
light and the total carbon emission of Beijing from 2008 to 2017. Comparing the long-term
series NL data with the carbon emission data, we can find that the results basically satisfy
that, when the nighttime light intensity is high, the carbon emissions rise. Besides, when
the intensity is low, the carbon emissions are also reduced, which verifies the positive
correlation between NL data and carbon emissions and further validates the conclusions of
current research.
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Research has shown that carbon emission caused by human activities is the main
reason for the increase in global CO2 concentration. In order to control the continuous rise
of CO2 concentration, all countries in the world are committed to anthropogenic carbon
emission reduction measures [30]. The change of CO2 concentration data is taken as one
of the foundations of judging the effect of emission reduction policy implementation [31].
At present, many scholars have studied the relationship between CO2 concentration and
carbon emissions. He et al. [32] found that the area with high spatial difference of near-
surface CO2 concentration was significantly correlated with human carbon emissions and
was significantly affected by human activities. Diao et al. [33] found, through experiments,
that CO2 concentration was high in areas with more factories and less vegetation, and vice
versa, indicating that anthropogenic carbon emissions had an important impact on CO2
concentration. In addition, Deng et al. [34] revealed the substitution relationship between
CO2 emissions and CO2 concentration, under the same temperature, rises by proving the
substitution elasticity of CO2 emissions and CO2 concentration on warming. Thus, there is
a positive correlation between carbon emissions and the carbon concentration.

Then, we use the total carbon emissions and average CO2 concentration data of each
province in China, in 2013, to conduct a fitting to testify to the conclusion. As shown in
Figure 7, the dots represent Chinese provinces. Tibet, Hong Kong, Macao, Taiwan, the Nei
Monggol Autonomous Region and Heilongjiang Province were excluded from the study
due to the lack of complete information. The abscissa is the total carbon emission of China’s
provincial administrative divisions, and the ordinate is the average CO2 concentration of
China’s provincial administrative divisions. It can be seen from Figure 7 that most of these
spots with high carbon emissions also have high average CO2 concentration. The above
conclusion can be further verified. Therefore, we theoretically speculate that there should
also be a positive correlation between NL data and CO2 data. Then, results are verified by
studying the night-light remote sensing images and the spatial distribution map of CO2
concentration in each region.
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Figure 7. Fitting relationship between carbon emissions and the carbon concentration of Chi-
nese provinces.

Firstly, we study night-light remote sensing images and the spatial distribution of CO2
concentration in Hubei Province from 2013 to 2017. The nighttime light images are the
monthly average NL data after noise reduction processing. The resolution of the NPP-VIIRS
image is 500 m, and the resolution of the CO2 concentration image is 25 km. NL images
have higher resolution and, therefore, provide more detailed information. The detection of
CO2 column concentration by satellite is easily disturbed by cloud cover, aerosols, and other
factors, resulting in the limited spatial resolution of CO2 concentration. Meanwhile, CO2
has an atmospheric diffusion effect, which makes it impossible to obtain the information
of strong emission point sources. The spatial resolution of our CO2 concentration data
is low, so the local area with strong CO2 concentration caused by similar power plants
cannot be clearly shown on the concentration map. Therefore, we choose to discuss on
the prefecture scale. It can be seen from Figures 8 and 9 that the intensity of night-light
gradually increased over these five years, and so did the concentration of CO2. In addition,
it is obvious that CO2 concentration is also higher in places with higher NL intensity, which
is basically consistent with the above conclusion that there is a positive correlation between
NL data and CO2 concentration data. To further verify it, we conduct a linear fitting of
NL data and CO2 concentration data in cities in Hubei province. The relatively complete
data of CO2 concentration are available from 2010, while the carbon emission data start
from 2008 to 2017. Therefore, considering the data integrity and coincidence, we choose
to study the relationship between the average annual NL data and carbon concentration
from 2010 to 2017. The average intensity of nighttime light of cities in Hubei Province is
extracted from the annual NL data after fusion, which is the average value of NL data DN
in each region. CO2 concentration has a diffusion effect, so it make no sense to use the
total value of CO2 concentration to study. The average CO2 concentration in each region is
used in the test. The fitting results are shown in Figure A1 in Appendix A. In these figures,
the abscissas are the average DN value of NL data in the region, and the ordinates are the
average CO2 concentration in the region. It is found that there is a positive correlation
between NL data and carbon concentration data.
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Figure 9. Spatial distribution of CO2 concentration in Hubei province (from left to right, 2013,
2015, 2017).

Since monthly data of CO2 concentration are available, in order to better discuss the
relationship between NL and CO2 concentration, we select the monthly data of NPP-VIIRS
from 2013 to 2017 for the study. The mean NL intensity of prefecture-level cities in Hubei
province is extracted from NPP-VIIRS data after pretreatment, that is, the mean NL data
DN of each region. Due to the large amount of data, the data are represented by the results
of two months each year. The fitting results are shown in Figure A2 in Appendix A. It can
be seen from the results that there is also a positive correlation between monthly NL data
and CO2 concentration data.

When studying the correlation between the average NL data and the carbon concen-
tration data of Hubei Province, from 2010 to 2017, we can find that the average nighttime
light intensity of Wuhan is much higher than that of other cities when VIIRS data are used.
However, when using DMSP data to extract NL data of cities in Hubei provinces, this
situation does not occur. This is because the VIIRS DNB band has high radiation sensitivity,
and some radiance information from gas combustion and fire may also lead to outliers
in the data. Therefore, the maximum value is removed before studying the relationship
between NL data and carbon concentration data in Hubei Province

However, in the study of night-light remote sensing images and CO2 concentration
distribution maps in the Beijing–Tianjin–Hebei region, it can obviously be found that the
conclusion is not consistent with the above inference. As shown in Figures 10 and 11, in the
Beijing–Tianjin–Hebei region, the NL intensity of Beijing and Tianjin is obviously greater
than that of other regions, but the CO2 concentration distribution diagram shows that the
CO2 concentration in the Beijing–Tianjin–Hebei region is the largest part mainly in Hebei
Province. Therefore, we further explore the relationship between NL intensity and CO2
concentration through the linear fitting of NL data and CO2 concentration data, from 2010
to 2017, in the Beijing–Tianjin–Hebei region.
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Figure A3 in Appendix A shows the fitting results between the annual NL data and
the CO2 concentration data in cities of the Beijing–Tianjin–Hebei region from 2010 to
2017. Selected areas are Beijing, Tianjin, and Hebei prefecture-level administrative regions
(Chengde, Qinhuangdao, and Zhangjiakou are not included in the study because of their
low NL intensity, due to their relatively backward economy). It is found that there is
a negative correlation between NL data and carbon concentration data. Moreover, we
also used the monthly data of NPP-VIIRS, from 2013 to 2017, for the study. March and
August are selected as representatives. It is obvious that there is also a negative correlation
between two sets of data, as shown in the Figure A4 in Appendix A. Beijing and Tianjin are
relatively developed, with frequent social and economic activities, and the total intensity
of lights at night is relatively high [35]. Therefore, Beijing and Tianjin are the two points
on the far right of the figures, respectively. It can be seen that the CO2 concentration
is lower than that of the surrounding Hebei region. This result is inconsistent with the
previous inference. Therefore, through consulting materials and literature, it is found that,
although the Beijing–Tianjin–Hebei region is closely connected, its development gradient is
greatly different, and the contradiction between economic development and environmental
resources is obvious [36]. Current regional economic development is in different stages [37].
The core industries of heavy industry, such as raw material supply and the energy supply,
are mainly concentrated in Hebei City, while the core industries of light industry and
the service industry are mainly concentrated in the Tianjin and Beijing regions [38]. As a
result, some prefecture-level cities in Hebei province have higher carbon emissions than
Beijing and Tianjin. In addition, as the capital of China and an international metropolis,
Beijing has made remarkable achievements in environmental governance, low carbon
emissions reduction, and other aspects. By actively adjusting and optimizing industrial
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structure and promoting green industrial development, the decoupling between economic
development and carbon emissions has been preliminarily achieved [39]. Therefore, the
urban economy of Beijing and Tianjin is developing rapidly, but the CO2 emissions in
Hebei province play a dominant role in the whole region. As a result, there is a negative
correlation between the nighttime light intensity and the CO2 concentration data in the
Beijing–Tianjin–Hebei region.

The existing models for estimating carbon emissions from NL data almost assume that
carbon emissions increase with the increase in NL intensity. However, with the adjustment
of China’s industrial and energy structure, carbon emissions will reach the “Emission peak”
in the future and even gradually decrease. Therefore, when using the carbon emission
model to estimate the future carbon emissions, the implementation effect of the current
carbon emission reduction policy should be considered, and the carbon emissions should
be estimated in combination with the actual situation. In addition, it can be seen from
the above research results that heavy industry may be marginalized in some developed
regions, leading to carbon emissions mainly concentrated in some underdeveloped regions.
Therefore, when simulating the spatial distribution of carbon emissions in various regions,
the local industrial structure and emission policies should also be taken into account to
make the results more practical. In the current study, Ou et al. [40] used multiple sources of
data, including NL data, population density data, and road grid data, to jointly estimate
carbon emissions. Su et al. [41] estimated the carbon emissions of prefecture-level cities
in China with the assistance of a Landsat remote sensing image by using the relationship
between NL data and carbon emission statistics. Zhao et al. [42] estimated the energy
consumption of prefecture-level cities in China by combining the nighttime light data and
the gross regional product, and the results were accurate and feasible to a certain extent. On
this basis, they analyzed the impact of changes in China’s industrial structure on China’s
energy consumption. Ghosh et al. [43] proposed the combination of nighttime light data
and population data to build a carbon emission estimation model. The results show that
these methods are more accurate than the carbon emission data generated by NL data alone.
Therefore, the subsequent research intends to establish a new carbon emission estimation
model, based on the surface vegetation structure, industrial structure, and other data, to
further verify and study the experimental results.

5. Conclusions

In this paper, the pre-processed DMSP-OLS data and NPP-VIIRS data are fitted to
obtain the nighttime light data of long-term series. Then, we regress the NL data of more
than 30 provinces in China with total carbon emissions, and we find a positive correlation
between NL data and carbon emission. Since there is a positive correlation between carbon
emission data and carbon concentration data, NL data should also be positively correlated
with carbon concentration data. The conclusion is verified by comparing night-light remote
sensing images with the spatial distribution maps of CO2 concentration. In Hubei province,
it is obvious that the CO2 concentration is high in places with high NL intensity, which is
consistent with the above inferred results. However, when studying the Beijing–Tianjin–
Hebei region, it is found that CO2 concentration is lower in places with high NL intensity in
Beijing and Tianjin. Therefore, in order to further study, the NL data and CO2 concentration
data in the Beijing–Tianjin–Hebei region are fitted, and a long-term negative correlation
is found between them. After analysis, it should be caused by the industrial structure
and carbon emission policies of the Beijing–Tianjin–Hebei region. The heavy industry in
Beijing and Tianjin is gradually marginalized, while light industry and service industries
develop rapidly, so the NL intensity is high, but the CO2 concentration is low. Some areas of
Hebei province have a high CO2 concentration due to the concentration of heavy industry
with high carbon emissions. Therefore, when constructing the model to estimate carbon
emissions using NL data, factors such as industrial structure, carbon emission policy, and
the urbanization level of the study area should be taken into account to optimize the model
and make the estimate result closer to the actual situation. In addition, a carbon emission



Remote Sens. 2022, 14, 4181 15 of 18

estimation model with NL data removed can be established at the same time, and then, the
research results of the two models can be compared to find out the specific significance of
NL data in the carbon emission estimation model. Since CO2 diffusion’s influence is not
considered in this study, this influence can be studied to explore whether it will affect the
regression between NL data and carbon concentration data. Additionally, the subsequent
research can use longer time series data to study.
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