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Spectral Energy Model-Driven Inversion of XCO2
in IPDA Lidar Remote Sensing
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Abstract— Carbon observation satellites based on passive the-
ory (e.g., OCO-2/3, GOSAT-1/2, and TanSat) have relatively high
carbon dioxide column concentration (XCO2) accuracy when the
observation conditions are met. Passive satellites have data bias
and coverage deficiencies due to cloud cover, low albedo, low-light
conditions, and aerosol scattering, resulting in carbon observation
satellites based on passive theory that cannot meet the demand
for high-precision, all-day, all-weather XCO2 monitoring. Active
detection satellites are urgently needed to support global carbon
sources, sinks, and carbon neutrality. China intends to launch
a sensor satellite with active detection of XCO2 in the coming
years. In this work, based on the satellite’s scaled-down airborne
experiments, a spectral energy model was developed to optimize
the conventional inversion algorithm and achieve a more accu-
rate XCO2 inversion. The 1.572-µm integrated path differential
absorption (IPDA) lidar column length is used indirectly to
evaluate the accuracy of the spectral energy model for signal
extraction. Also, the experimental results show that the accuracy
of the signal extracted by the 1.572-µm IPDA lidar column
length is 0.74 and 6.20 m at sea and on land based on the
indirect evaluation of the length of the 1.572-µm IPDA lidar
column length. The optimized XCO2 was evaluated (standard
deviation as an evaluation metric) and its XCO2 standard
deviation reduced by 31%, 63%, and 66% in the ocean, plains,
and mountains, respectively. Our algorithm can obtain the XCO2
with a consistent trend by using XCO2 from the OCO-2 satellite
as a reference. The calculated XCO2 is more accurate in areas
dominated by anthropogenic factors (plains), due to the accuracy
of the IPDA detection mechanism. This algorithm improves the
accuracy and robustness of XCO2 inversion and has important
reference significance for the IPDA lidar carried by China’s
satellites to be launched in this year.
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I. INTRODUCTION

THE greenhouse effect, caused by the rapid increase in
anthropogenic emissions of primary greenhouse gases

(CO2, CH4, and N2O) around the world, is affecting the
ecosystem health and economic advancement. Since the indus-
trial revolution in the last century, the global CO2 gas
concentration has increased from 278 ppm (prior to the
industrialization era) to 410 ppm in 2020 [1]. However, the
global CO2 concentration increase of 10 ppm took five years
from 2015 to 2020 [2]. Despite the government’s lockdown
measures during the epidemic, the growth rate of the CO2
column concentration (XCO2) was slowed down by 0.08–
0.23 ppm/year relative to the growth rate of 2 ppm/year.
In addition, as we approach the goal of reaching the carbon
peak in 2030 in China [3], an efficient carbon monitoring
technology must be developed to accurately quantify the
sources and sinks of CO2. Currently, the theory of XCO2
monitoring is mainly divided into passive and active. Passive
monitoring relies on measuring the reflected sunlight spectrum
in the infrared region over the globe to retrieve the column-
averaged XCO2 (e.g., GOSAT, GOSAT-2, OCO-2, OCO-3, and
TanSat missions). The principle of active XCO2 detection is
the integrated path differential absorption (IPDA) [4], [5], [6],
[7], [8], [9], [10], which measures the differential absorption
of CO2 by using two laser beams as light sources, followed
by retrievals to determine the XCO2 along the laser light path.

This capability is insufficient to achieve for the passive spec-
trometers using reflected sunlight due to aerosol scattering, low
coverage at high latitudes, and the inability to observe through-
out the day [11], [12], [13], [14], [15], [16], [17], [18], [19].
We need to combine active and passive XCO2 detection
equipment to accurately quantify the sources and sinks of CO2.
Currently, many scholars have carried out some studies on
XCO2 based on IPDA lidar. Abshire et al. [20] conducted the
1.572-µm IPDA lidar ASCENDS science flight experiment in
2011, obtaining a 2–3-ppm error in a relatively constant XCO2

area based on 10-s data averaging. Refaat et al. [21] carried
out 2.0-µm IPDA lidar experiments in 2014 and performed
modeling based on the obtained profiles over the sea and
land, and their results reduced the range bias of the CO2

pulses. Singh et al. [22] conducted a simulation experiment
in 2017 that resulted in an expected performance of less than
0.35 ppm based on 10-s data averaging. Zhu et al. [23] carried
out 1.572-µm IPDA lidar experiments in China and confirmed
the validity of the airborne experiments by evaluating the
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Fig. 1. Map of the flight track over the Qinhuangdao in China on March
14, 2019.

whole detection system hardware. Xiang et al. [24] carried out
a program design for XCO2 inversion based on the 1.572-µm
IPDA flight experiment in China. The results showed that the
predicted relative random error of XCO2 was less than 0.3%
for the forthcoming satellite mission over land.

Although many of the abovementioned scholars have carried
out the inversion of XCO2 based on the IPDA lidar, the
hardware equipment is different in different teams. Therefore,
the format of the IPDA echo signal and the algorithm to
optimize or invert the XCO2 data (mostly based on idealized
Gaussians) are also different. Besides, considering that the
obtained data are non-Gaussian shaped from our team, thus,
this article proposes an algorithmic framework to reduce the
errors caused by the non-Gaussian data and the differential
absorption optical thickness (DAOD) and integral weight
function (IWF) separation calculations during the airborne
signal processing. Therefore, we propose a model based on
spectral energy that can match non-Gaussian signal waveforms
from the experiments, especially for multiple subwaveform
echoes from mountains or clouds. It can also be used to obtain
the optimized XCO2 based on the simultaneously optimized
DAOD and IWF from the parameter set information combined
with (1). Also, the core principle of this spectral energy model
is to construct the spectral energy model in advance and extract
the parameters of the multiwaveform signal based on the above
equations [in (2)]. Then, the fit parameters are optimized based
on the Levenberg–Marquardt (LM) algorithm with the spectral
energy model as the core. The optimization of the IWF is
achieved by direct leveling with unequal accuracy. Finally,
we reduce the signal energy by definite integration using the
optimized parameters to improve the DAOD. This inversion
method takes the spectral energy model as the core and focuses
on the parameter transfer and optimization to improve the
calculation accuracy of the IWF and the optical differential
absorption thickness. Therefore, this theory can effectively
optimize the traditional XCO2 algorithm and further improve
the accuracy of IPDA lidar detection to support the analysis
of carbon sources and sinks.

The remaining parts of this work are arranged as follows.
The data and method we used are described in Section II. The
main results and discussions are demonstrated in Section III.
Finally, we conclude the whole study in Section IV.

TABLE I
PARAMETERS OF THE USED 1.572-µM IPDA LIDAR

II. DATA

In March 2019, aircraft equipped with IPDA lidar was used
to detect the CO2 column concentration along a predetermined
route. In this work, we selected the portion of the flight
data during the experiment for algorithm verification, and the
altitudes of the selected data were mainly concentrated at
7 km. We also present the experiment path and the terrain slope
in Fig. 1 to clearly show the flight trajectory. The overall flight
trajectory of the aircraft mainly covered the sea area around
Qinhuangdao in China (see Fig. 1).

The experimental data obtained in the research area com-
prise 13 files, in which a single file contains 4000 data packets.
Each packet contains an observation pair and 22 000 float
data, namely, ON and OFF wavelength pulse-echo signals,
corresponding to 11 000 float data. The first 11 data of
each observation pair also contain the current aircraft attitude
information, global positioning system (GPS) cycle second
information, longitude and latitude, altitude, course speed, and
other information. Some of the equipment’s information is
shown in Table I.

The ICESat-2_ATL08_V4 product is used to obtain the
elevation values of the ground in the Qinhuangdao area
from December 2018 to December 2021 to further verify the
optimized integral weighting function results. Then, the ele-
vation values are used as the input parameters for comparison
verification. The ICESat-2 and experimental data are based on
the WGS84 coordinate system. The WGS84 coordinate system
is a geocentric coordinate system that contains a set of standard
latitude and longitude coordinate systems of the Earth and it
is a reference ellipsoid used to calculate raw elevation data.
Some scholars have verified the ICESat-2 data, and the mean
of height error of ICESat-2_ATL08 terrain is less than 0.05 m
in the plain region and 0.5 m in the mountain region [25].
Therefore, we validated the model using ICESat-2_ATL08
data at the ground surface.

III. THEORETICAL FRAMEWORK

The proposed algorithmic framework focuses on two main
aspects in this work to obtain a high-precision XCO2. First,
we incorporate (1) to optimize the accuracy of the laser
column length and obtain the optimization of the IWF from
the denominator’s perspective. Second, this work incorporates
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Fig. 2. Framework of the proposed methodology.

(1) to optimize the energy integral of the waveform to obtain
the DAOD from the numerator’s perspective. Fig. 2 shows the
algorithm framework flowchart

XCO2 =
DAOD
IWF

=

1
2 × ln

(
POFF
EOFF

/ PON
EON

)
∫ PSFC

P0
WFCO2(p)dp

(1)

where XCO2 is the CO2 concentration after inversion; DAOD
is the differential absorption optical thickness; IWF is the
integral weight function; P and E are the ground echo
and output energies, respectively, which are measured at a
corresponding online or offline wavelength; WFCO2(p) is the
weighted function of CO2; and PSFC and P0 are the integral
upper and lower limit parameters determined by ranging
information, meteorological parameters, and aircraft inertial
guidance information, respectively.

A. Function Model Construction

The echo signal of lidar is regarded as the superposition
of several Gaussian signals, and it has the characteristics of
approximate symmetry. However, this characteristic is affected
by terrain and causes signal broadening. The broadened signal
is difficult to quantitatively describe by using a single equation,
which increases the calculation error of DAOD and IWF.
We propose a new theory [see (2)] for waveform modeling
based on the spectral energy model for the 1.572-µm IPDA
lidar echo signal, which can reduce the calculation errors
of DAOD and IWF caused by broadened signal because the
conventional waveform fitting cannot be accurately described
by the Gaussian model [26]. We combine multiple parameters
based on (2) with the real signal situation of 1.572-µm
IPDA lidar echo signal in the experiment to ensure that the
influence of the modified model can reduce the broadening
effect of waveform. Moreover, the characteristic parameters
of the signal are obtained through the quantitative expression
of the whole echo signal formula. The spectral energy formula
and the modified formula are given as follows:

F(x) = h − c.
eg(x−d)( 1

a −
1
b )

eg(x−d)( 1
a +

1
b ) + e−g(x−d)( 1

a +
1
b )

(2)

where a = 1/4(1/τr−1/τ f ) and b = 1/4(1/τr +1/τ f ), and
τr and τ f are the rise and fall times, respectively. In (2),

parameter d is the center of the waveform component and
represents the distance of the signal transmission. Also, the
parameter g is a constant. The remaining parameters (a, b, c,
and h) reduce the waveform equation from the discrete data.
Parameters a, b, c, d, and h must be obtained by fitting.

We adopted the LM algorithm based on (2) as the core
to obtain accurate model parameters for the echo signals of
multiple land use types. The LM algorithm can be deeply
optimized based on the previous model parameters, combined
with the corresponding constraints, to obtain nonlinear fitting
results that meet the accuracy requirements.

B. Optimized IWF and DAOD From the Above Model

During the optimization of the IWF, we mainly focus on the
modification of the upper and lower limits in IWF. When the
CO2 column length error is less than 3 m, the experimental
results show that the error of the XCO2 column using the
IPDA lidar system in space is less than 1%. Improving the
IWF inversion is feasible from the perspective of the accurate
measurement of the CO2 column length by combining the
optimized parameter d of the above model.

The IPDA lidar transmitter emits 1.57-µm online and
offline beams in parallel at a 200-µs interval. Accordingly,
this transmitter can be regarded as two consecutive distance
measurements of the same target, thereby generating redundant
observations of the ranging information. Although the LM
algorithm is based on (2), the distance measurement obser-
vation value still has an error relative to the true value. Given
that the distances were separately measured for the online and
offline bands, the distance measurement values generated by
the two observations should be slightly different. To balance
this difference, we introduce the direct adjustment theory of
unequal precision. In terms of the measurement adjustment,
we generally consider weight as the relative evaluation index
of the reliability of observation results, which is inversely
proportional to the square of the median error. The most
probable value formula is used to obtain the high-precision
range values. The weight and the most probable value formula
are given as follows:

L = clight ∗ dOp/(2 f ) (3)

Pn =
1

m2
n

(4)

x =

∑2
n=1 Pn × L∑2

n=1 Pn
(5)

where L is the measurement value of the online or offline
bands processed from the above data; clight is the speed of light;
d is the center of the waveform component and represents the
distance of the signal transmission; f is the 1.572-µm IPDA
lidar sampling frequency; m2

n is the median error correspond-
ing to the online or offline bands, and this median error refers
to the standard deviation of 100 counts before the start of the
valid signal; Pn is the weight corresponding to the online or
offline bands; and x is the optimized high-precision ranging
value.

During the optimization of the DAOD, we mainly fit the
signal waveform based on the proposed model equation to
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Fig. 3. Geographic model of the lidar footprints deviating from the
sub-aircraft points. Point O represents the location where the 1.572-µm
IPDA lidar signal is emitted. Point D represents the reflection position of
the 1.572-µm IPDA lidar signal when it touches the ground. Point A is a
point on the sub-aircraft path (OA), and its height is on the same plane as
point D. Points C, A, and B are in the same elevation plane, and the angles
formed by points A, O, and C are equal to the pitch angle. In (c), this N and
E represent the north and east in the coordinate axes, respectively.

obtain an accurate description of the signal equation. Further-
more, we integrate the equation to restore the energy of the
signal according to the restored model equation. Therefore,
the abovementioned optimization method can more accurately
obtain the waveform energy compared with the traditional
numerical discrete integration and integration based on the
Gaussian kernel formula.

C. Model Verification

The validation of the algorithm framework primarily focuses
on the validation of model parameter d. If the model param-
eters are accurately obtained, then the accuracy of XCO2 will
also be greatly improved. In the parameter group of the model,
model parameter d reflects the length of the CO2 cylinder, and
it is verifiable. Therefore, the validation of model parameter
d can reflect the accuracy of the algorithm framework and the
model’s inversion of XCO2.

The model validation was divided into sea and land based
on the different surface types. First, we validated the tidal
data from the Qinhuangdao site on the sea surface. Second,
we validated the ICESat-2 data in plain and mountainous areas.
We need to reevaluate the offset of latitude and longitude to
obtain accurate surface elevation values of the lidar footprints.
Then, we match the ICESat-2 data as the surface elevation
based on the offset lidar footprint coordinates of point D in
Fig. 3. Fig. 3 shows the effect of airborne attitude angle, which
causes the true lidar footprint to deviate from the sub-aircraft
point. Specifically, the location of the sub-aircraft point (the
GPS value) does not represent the true location of the footprint.

Assuming that the attitude angle of the aircraft does not
change, the sub-aircraft point path observed by the 1.572-µm
IPDA lidar is OA. However, the path observed by the
1.572-µm IPDA lidar in the experiment is OD due to the
combined influence of the roll and pitch angles. Specifically,
AD is the deviation distance (approximately 330 m) of the
actual footprint and the sub-aircraft point. Therefore, the
true location of the LiDAR footprints must be reevaluated
because the GPS data do not represent the true location of
lidar footprints. We use the following formula to obtain the

deviation from latitude and longitude:

LAD = LOD sin (arcos(cos(Pa)cos(Ra))) (6)
LAC = LOD cos (arcos(cos(Pa)cos(Ra))) tan(Pa) (7)
LC D = LOD sin(Ra) (8)

α = atan(VN /VE ) (9)
β = (L2

AC + L2
AD − L2

C D)/(2LACLAD) (10)
1Lat = LADsin(1αβ)/111321 (11)
1Lon = LADcos(1αβ)/(cos(Lat)111321) (12)

where LOD is the range [the OD in Fig. 3(a)] detected by
lidar from the above theory; Pa is the pitch angle; Ra is the
roll angle; VN is the northbound speed; VE is the east speed;
and LAD, LAC, and LC D represent model distances from AD,
AC, and CD in Fig. 3(a), respectively. Variable α represents
the deviation angle of the aircraft between the actual flight
direction and east. Fig. 3(c) shows β in detail in the plane
formed by points A, C, and D. 1αβ represents the difference
between α and β. 1Lat and 1Lon represent the offset from
point D relative to point A, respectively.

IV. EXPERIMENTAL RESULTS

A. Experimental Results Based on the Abovementioned
Model Functions

We performed the same processing for each set of signals
based on the algorithmic framework mentioned above to
extract the valid signals from the raw data. In this process,
we build model equations and obtain the model parameters by
combining each echo component to fit in the signal. Fig. 4
shows the processing results of the multiple subcomponents
in a single signal.

We obtained the model parameters of the subcomponents
in the raw signal data through model fitting and LM algo-
rithm optimization in the algorithm framework, as shown in
Fig. 4(a). Then, we remove the optimized model energy [the
red curve in Fig. 4(a)] from the original energy data. This
remaining energy is called the difference data [the gray dot in
Fig. 4(b)]. Subsequently, we started the model parameter fitting
and optimization of the signal subcomponent in Fig. 4(b)
based on the difference data and obtained the corresponding
model parameters. We completed the quantization of the signal
components and demonstrated the quantized model through
the superposition of multiple subsignals in Fig. 4(c).

Fig. 4(d) shows the remaining energy distribution, which is
called Gaussian white noise, when the energy of the super-
imposed subcomponents of the model is removed from the
original data. In particular, we performed statistics in the form
of a histogram in Fig. 4(d). The results showed a nearly normal
distribution, as shown in Fig. 4(e), which was consistent with
the distribution characteristics of Gaussian white noise. The
abovementioned results show that the signal data are well
quantified by our algorithm model.

The 1.572-µm IPDA lidar signal was divided into four
types (sea surface, plain, mountain, and cloud) in the study
area. We selected the coefficient of determination (R2), which
was used to quantitatively evaluate the relationship between
the quantized signal energy and the original data energy. The
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Fig. 4. Model processing results. The processing results of each step for the
received λOFF signal are mainly shown in this figure, and the lidar footprint
is located on the sea surface. (a) Results of first model component fitting.
(b) Results of second model component fitting. (c) Results of first and second
model component fits based on the original data. (d) Residuals after the
effective signal has been extracted. (e) Statistical results of the residuals in
Fig. 4(d).

visualization results of the quantitative description of the signal
are shown in Fig. 5. The results demonstrate that the model has
high robustness for the different signal types, and its evaluation
index R2 is almost higher than 0.97 for the four types of lidar
signals. In particular, the model can be well quantified for
cloud and ground signals that may cause multiple echoes. The
model function can better quantify the 1.572-µm IPDA lidar
signal.

B. Model Validation

To further verify the algorithm framework, we divide the
validation into sea and land based on the validation idea
and specific experimental conditions. We compare the GPS
value provided by the aircraft with the difference between
the vertical CO2 column length from the aircraft platform
to the sea surface and the sea surface height in the WGS84
coordinate system to verify the sea surface. The real-time
sea surface height mainly consists of two components: the
elevation of the tide survey station (Qinhuangdao station) and
the real-time tide data [data in Fig. 6(a)]. In addition, the data
of the tide survey station involved the conversion from the
1985 elevation system data to the WGS84 elevation system
data, and the conversion value ξ [Fig. 6(b)] was obtained
through the EGM2008 gravity model calculation.

In Fig. 6(c), we compare the value of the GPS height with
the value after the deviation was corrected (the value is the sum
of the two values, the corrected vertical CO2 column length,
and the real-time sea surface height). The results show that
the accuracy of our algorithm framework on the sea surface
is 0.74 m relative to the measured height of about 6800 m.
In addition, the Pearson coefficient is 1.00, demonstrating the
presence of a significant correlation between the data at the
0.01 level, which further indicates that the accuracy of our
algorithm framework has high robustness in sea surface.

We compared the difference between the GPS data and the
deviation correction value in Fig. 7(a) to verify the effect
of the model on land. The deviation correction value mainly

Fig. 5. Raw signal data from bands λON and λOFF for the multiple signal
types.

includes two items, namely, the vertical CO2 column distance
[the algorithm results in Fig. 7(a)] and the surface elevation
value of the corresponding lidar footprint. The mean of the
height error of the ICESat-2_ATL08 terrain is less than 0.05 m
in the plain region and 0.5 m in the mountain region [25].
Considering that the IPDA lidar and ICESat-2_ATL08 data
are in the WGS84 coordinate system, we use the ICESat-
2_ATL08 data as the surface elevation input data. Meanwhile,
we matched the 1.572-µm IPDA lidar data with the ICESat-
2_ATL08 data and labeled the matched 1.572-µm IPDA lidar
data as plains or mountains in Fig. 7.

We show the results of the algorithm model validation on
land, with an accuracy of 6.20 m, in Fig. 7(b). The low
accuracy of this algorithm framework on land is mainly due
to the validation dataset. The ICESat-2_ATL08 data were col-
lected from December 2018 to December 2021 to increase the
number of high-precision validation data. Moreover, we used
a rectangular box range of 8 m to match the footprint data of
ICESat-2 and 1.572-µm IPDA lidar. This work also introduces
some errors when the local terrain is complex. In addition, a
certain error in the validation data was observed compared
with the 1.572-µm IPDA lidar data collected in March 2019.
Therefore, the validation on the sea surface is more represen-
tative of the model validation.

In this section, we use parameter d to verify the accuracy
rates of the algorithm framework in the study area, which
are 0.74 and 6.20 m in the sea and land, respectively. The
accuracy of land is low compared with that of sea because of
the uncertainty error in the land verification dataset. Therefore,
the verification of the algorithm framework on the water can
better reflect the accuracy. Overall, the algorithm framework
has better accuracy and robustness.

C. XCO2 Optimization by the Model

We show three different IWFs (optimized IWF (OIWF),
FIWF, and NIWF) for optimization in Fig. 8(a). The OIWF is
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Fig. 6. Algorithm validation results on the sea surface. (a) Geographical location and tidal height data of the tide survey station. (b) Elevation anomalies
between the 1985 elevation system and the WGS84 elevation system were visualized. (c) Statistical results.

Fig. 7. Algorithm validation results on the land surface. (a) Validation model of the algorithm on the land surface type. (b) Statistical results.

Fig. 8. Visualization of the results of the OIWF. OIWF is the optimized
IWF. FIWF is obtained from λOFF , and NIWF is obtained from λON .
(a) Three different IWF (OIWF, FIWF, and NIWF). (b) Zooms in on the
local information of Fig. 8(a). (c) Standard deviation results for the three
IWF in three different surface types (sea, plain, and mountain).

the optimized IWF based on the direct adjustment theory of
unequal precision. The FIWF is the calculated IWF through
λOFF. The NIWF is the calculated IWF through λON. We have
enlarged the local information of Fig. 8(a) in Fig. 8(b) because
the differences between OIWF, FIWF, and NIWF are relatively
small. Furthermore, we counted the standard deviations of the
three IWFs in three different surface types (sea, plain, and
mountain) in Fig. 8(c).

The standard deviation was adopted as the evaluation index,
and the smaller standard deviation indicated better results.
For ocean and plain areas, the standard deviation of OIWF
is close to that of FIWF, but the standard deviation of OIWF
is lower than that of NIWF, as shown in Fig. 8(c). However,

Fig. 9. Visualization of the results of the optimized DAOD. DAODM is the
optimized DAOD based on the model. DAODT is obtained from the traditional
algorithm. (a) Results of DAODT and DAODM. (b) Statistical results of
Fig. 9(a). (c) Standard deviation results of the DAODT and DAODM in three
different surface types (sea, plain, and mountain).

in mountainous areas, the standard deviation of OIWF is lower
than those of FIWF and NIWF. Therefore, compared to FIWF
and NIWF, the OIWF from our model has a good advantage,
especially in mountainous areas.

We compare the traditional energy integration and the
proposed theory in Fig. 9(a) to optimize the DAOD. The
DAODM is the optimized DAOD from the proposed model
in this article. The DAODT is the DAOD that is calculated
from the traditional discrete energy integral. Fig. 9(b) shows

Authorized licensed use limited to: Wuhan University. Downloaded on January 04,2024 at 07:18:12 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: SPECTRAL ENERGY MODEL-DRIVEN INVERSION OF XCO2 4100609

Fig. 10. Visualization of the results of the optimized XCO2. (a) Results
of XCO2T and XCO2M. (b) Statistical results of Fig. 10(a). (c) Standard
deviation results of XCO2T and XCO2M in three different surface types (sea,
plain, and mountain).

the statistical results of Fig. 9(a), which demonstrates that
DAODM is more aggregated relative to DAODT. This finding
is also consistent with the actual situation. The DAOD of the
airborne data does not drastically change because XCO2 does
not significantly fluctuate over a distance in the horizontal
direction. In addition, we use the standard deviation as an
evaluation metric, and the accuracy of the model optimization
is improved by 77% compared with the traditional algorithm.
The standard deviations of DAODT and DAODM are 1.04 and
0.24, respectively. Furthermore, we show the distribution of
the standard deviation over three different surface types (sea,
plain, and mountain), and the model improves the accuracy
by 67%, 86%, and 88% for the sea, plains, and mountains,
respectively.

We compare the traditional algorithm with the optimized
algorithm in Fig. 10(a) to optimize XCO2. The XCO2M is
XCO2 based on the theory proposed in this work in Fig. 10(a).
The XCO2T is XCO2 based on the traditional algorithm.
Fig. 10(b) shows the statistical results from Fig. 10(a), and
the density curve of XCO2 presents a normal distribution.
In Fig. 10(b), the XCO2M data distribution is more aggregated
than XCO2T. In particular, we have calculated the standard
deviation of XCO2 in three surface types (sea surface, plain,
and mountain) in Fig. 10(c). The results show that XCO2M
increases by 31%, 63%, and 66% relative to XCO2T. The
yellow line represents the average XCO2M per second in
Fig. 10(a). The mean values of XCO2 at the sea level, plain,
and mountain are 409.91, 416.14, and 411.83 ppm, with
standard deviations of 9.60, 8.34, and 7.77 ppm, respectively.

D. Accuracy Verification With OCO-2

We perform an indirect comparison with the OCO-2 satellite
data in Figs. 11 and 12 for the accuracy assessment of the
optimized XCO2. We discovered that the OCO-2 satellite data
are available on March 14 and March 16 because the OCO-2
data are close to the airborne experimental data in time and
space.

The experimental data were classified as ocean, plains, and
mountains according to the type of surface, as shown in
Fig. 11. The mean values of XCO2 for the airborne experi-

Fig. 11. XCO2 validation. The 1.572-µm IPDA lidar data in the plain area
are marked with rectangular boxes in Fig. 11.

ments were 409.91, 416.14, and 411.83 ppm. The OCO-2 data
were classified as ocean, plain, and mountainous according
to their location in space, and the mean XCO2 values were
calculated to be 412.49, 413.57, and 414.85 ppm for the
corresponding regions. By contrast, this XCO2 from IPDA
lidar has changed by −2.58, 2.57, and −3.02 ppm in ocean,
plain, and mountain relative to the OCO-2 data, respectively.
The difference XCO2 for the two different platforms is mainly
due to the detection mechanisms between the OCO-2 satel-
lite and the IPDA lidar. Specifically, the XCO2 from the
OCO-2 satellite is the full atmospheric column concentration.
Meanwhile, the XCO2 from IPDA lidar is the atmospheric
column concentration from the surface to the aircraft. We also
discovered that the measured XCO2 in the mountains is about
2 ppm higher than that in the ocean for both platforms,
indicating that the XCO2 changes from the OCO-2 satellite
and the IPDA lidar are consistent.

We performed tests for the XCO2 trendiness from the
OCO-2 satellite and IPDA lidar in Fig. 12. The averaged XCO2
of the IPDA lidar is calculated at fixed latitudinal intervals
(0.01◦) based on the trajectory of the airborne flight. We also
calculated the mean of XCO2 for each latitude interval (0.01◦)

based on the OCO-2 data on March 16. Fig. 12 shows the mean
XCO2 changes at different latitudes based on two observation
platforms.

The XCO2 monitoring by the OCO-2 passive satellite
is considered relatively reliable. Accordingly, we chose the
OCO-2 data as a reference for the trend analysis. The XCO2
changes of the IPDA lidar and OCO-2 have basically the same
trend in Fig. 12. In particular, the trend is clearly consistent,
as shown in the shaded rectangular box in Fig. 12(a)–(c). The
reason for the inconsistent trend in the middle part of Fig. 12
lies in the different observation times of the platforms and the
type of surface. In terms of observation time, IPDA lidar was
observed on March 14 at 11:00 local time. OCO-2 satellite
was observed on March 16 at 13:00 local time. Furthermore,
the area detected by IPDA lidar for the type of surface
observations is urban with high anthropogenic activity factors
at 39.80 and 39.97 N. However, the corresponding areas
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Fig. 12. Trend validation results.

detected by the OCO-2 satellite are rural and cultivated fields
with relatively weak anthropogenic activity factors. Overall,
our algorithm is highly accurate and consistent.

V. CONCLUSION AND DISCUSSION

The existing XCO2 inversion assumes that the signal is
idealized Gaussian based on the IPDA lidar. In addition, the
calculation of IWF and DAOD is separated in the traditional
theory of calculation. Specifically, the required parameters are
not from the same equation for computing IWF and DAOD.
Therefore, a theory is needed to optimize the error caused by
parameter transfer. In this work, we propose a model based
on spectral energy, which can well match the experimental
non-Gaussian signal waveform, especially for the multiwavelet
from mountains or clouds. Moreover, we can obtain multiple
parameters to calculate IWF and DAOD based on the above
core equations, thus effectively improving the accuracy of the
algorithm.

During the model validation, the 1.572-µm IPDA lidar
column length (from the parameter d conversion) is used
indirectly to evaluate the accuracy of the spectral energy
model for signal extraction. The experimental results show
that the accuracy of the 1.572-µm IPDA lidar column length is
0.74 and 6.20 m at sea and on land based on the indirect evalu-
ation of the length of the 1.572-µm IPDA lidar column length,
respectively. The validation sets have errors on land because of
the large time interval of the validation data collected on land.
The model verification on the sea surface reflects the accuracy
of our algorithm. In addition, the sea surface model verification
accuracy indicates that the algorithm accuracy has entered
the subunit compared with an IPDA lidar spatial resolution
of 1.2 m. Furthermore, we verify the optimization of IWF,
DAOD, and XCO2. The IWF optimized by the model was
superior to the IWF calculated by λON or λOFF. In particu-
lar, the optimization effect of our model is more prominent
in the mountainous areas. Our overall DAOD performance
improved by about 77% compared with those of the traditional
algorithms, especially in the sea, plain, and mountain areas,
by 67%, 86%, and 88%, respectively. Finally, the optimized
XCO2 was less scattered (standard deviation as an evaluation
metric) and its accuracy was reduced by 31%, 63%, and 66%
in the ocean, plains, and mountains, respectively, compared
with the traditional algorithm. In addition, we evaluated the
mean XCO2 values of 409.91, 416.14, and 411.83 ppm for

the sea, plains, and mountains based on the 1-s interval of
the averaged XCO2, respectively. Our algorithm calculates the
XCO2 with high accuracy and consistency with XCO2 from
the OCO-2 satellite as a reference. In particular, the XCO2 is
more accurate in areas dominated by anthropogenic factors,
due to the accuracy of the IPDA detection mechanism.

High-precision active CO2 monitoring is becoming increas-
ingly important with the deepening research on carbon cycle
and neutralization. The airborne experimental data were col-
lected based on a spaceborne scale model in Qinhuangdao,
China. Based on this airborne experiment, we designed an
algorithm for detecting XCO2 using the 1.572-µm IPDA lidar.
This algorithm improves the accuracy and robustness of the
XCO2 inversion and has important reference significance for
the IPDA lidar carried by China’s satellites to be launched in
the coming years. In the future, we will carry out related work
and try to integrate XCO2 data based on active IPDA lidar and
passive observation satellite products.
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